検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 34 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

核設計手法報告書

高下 浩文; 樋口 真史*; 富樫 真仁*; 林 達也*

JNC TN8410 2000-011, 185 Pages, 2000/05

JNC-TN8410-2000-011.pdf:4.67MB

FBR炉心解析技術について、関連部署への周知及び技術の伝承のために、設計評価Gr.において用いられている核設計手法についてまとめた。特に当Gr.で実施してきた127本バンドル「もんじゅ」高度化炉心の概念設計に対して用いられている核設計手法を中心に示した。示した項目は実効断面積の作成、2次元燃焼計算、3次元拡散計算、反応度係数計算、制御棒価値計算における計算方法である。本報告書で示される手法は、現時点での当Gr.の標準的な核設計手法である。しかし、今後、評価精度の向上を目指して、計算コードの高度化・整備、「もんじゅ」性能試験データ等を用いた設計評価における補正・不確かさの低減、核データ更新等を実施していく予定であり、それに伴い、核設計手法も見直される可能性があるが、情報の共有化の観点から現時点での当Gr.の標準的な核設計手法をまとめたこととした。

報告書

核設計基本データベースの整備(XI) -高速実験炉「常陽」MK-I性能試験・運転データ解析--

横山 賢治; 沼田 一幸*

JNC TN9400 2000-036, 138 Pages, 2000/03

JNC-TN9400-2000-036.pdf:10.16MB

高速炉の設計精度の向上を目指して、核燃料サイクル開発機構(旧動力炉・核燃料開発事業団)ではこれまでにJUPITER実験解析の結果を反映した統合炉定数を作成し、大型炉心の核設計精度の大幅な向上を達成する見通しを得た。現在、核燃料サイクル開発機構では、引き続き、更なる精度向上と信頼性の確保を目指して、最新の研究成果を反映し、JUPITER実験以外の積分データの整備を進めている。本報告書では、高速実験炉「常陽」の積分データ整備の一環として、「常陽」MK-I炉心で測定された性能試験データや運転データに対してC/E値の評価及び感度解析を行った。解析対象とした核特性は、臨界性(最小臨界炉心)、Naボイド反応度、燃料・ブランケット置換反応度、燃焼係数である。JUPITER標準解析手法に基づくC/E値評価を行った結果、臨界性、燃料・ブランケット置換反応度については、解析値と測定値は良い一致を示すことを確認した。一方で、Naボイド反応度については、解析値が過大評価傾向であることが分かった。また、燃焼係数については、各運転サイクル間でC/E値のばらつきが大きくなった。今後、測定誤差の観点から詳細な検討が必要であるが、統合炉定数のための積分データとして利用できる見通しを得た。更に、臨界性、Naボイド反応度、燃料・ブランケット置換反応度に関して感度解析を行い、「JUPITER実験のZPPR-9炉心の感度係数と比較し、「常陽」MK-I炉心の特徴を感度係数の面から明らかにした。

報告書

高速炉核特性の数値解析手法の改良(III)

竹田 敏一*; 北田 孝典*; 山本 敏久*; 片木 洋介*

PNC TJ9605 98-001, 267 Pages, 1998/03

PNC-TJ9605-98-001.pdf:11.65MB

高速炉核特性の数値解析手法の改良として、マルチバンド法、摂動モンテカルロ法、輸送ノード法に関連する研究を行った。本報告書は以下の3部に分かれている。第1部 マルチバンド法による反応率計算法の改良マルチバンド法を用いて、ブランケット領域の反応率分布を詳細に評価する手法を検討した。フィッティング法によって作成した3バンドパラメータを用いて、U-238捕獲反応、U-235核分裂反応、Pu-239核分裂反応、U-238核分裂反応の反応率分布を解析した。対象核種としては、構造核種である鉄、ニッケル、クロム、およびナトリウムの4核種とした。マルチバンド法を用いることにより、いずれの反応率もブランケット深部で反応が増大する方向に補正され、補正量は最大で5%に達した。この結果は、従来の解析手法による実験値とのずれを改善する方向である。またこの補正量は、マルチバンド法におけるバンド間の散乱の取り扱いによって大幅に異なることがわかった。従来のフィッティング法の問題点を解決するべく、直接的なマルチバンドパラメータの作成法の検討も行った。第2部 摂動モンテカルロ法による反応度評価手法の改良摂動モンテカルロ法による摂動計算理論の検討及び、計算コードの作成を行った。昨年度までに使用していた相関サンプリング法だけでなく、導関数演算子サンプリング法でも計算できる、連続エネルギー摂動モンテカルロ計算コードを作成した。作成した計算コードを用いて「もんじゅ」炉心を対象とした計算を行い、参照解と比較検討した。「もんじゅ」にGEMまたは模擬燃料集合体を装荷した体系で、それらの集合体内のナトリウム密度を変化させた摂動、また制御棒全引き抜き体系で体系内のナトリウム密度を一様に変化させた摂動にともなう固有値の変化を調べた。ナトリウム密度の変化が小さい場合には、相関サンプリング法と導関数演算子サンプリング法のどちらの手法でも良好な結果を得ることができた。しかしながら、密度変化が大きい場合には、相関サンプリング法では妥当な結果を得ることができなかったが、導関数演算子サンプリング法では、そのような大きな密度摂動の場合でも良好な結果を得ることができることがわかった。第3部 3次元六角体系用輸送ノード法の改良集合体(ノード)内平均中性子束及びノード境界の中性子束から、集合体出力分布を評価する手法を、輸送理論に基づき導出し

報告書

DCA未臨界度測定試験体系の炉心基本特性

羽様 平

PNC TN9410 97-088, 139 Pages, 1997/10

PNC-TN9410-97-088.pdf:3.01MB

重水臨界実験装置(DCA)の未臨界度測定試験体系の臨界特性(重水臨界水位、水位反応度、安全棒(制御棒)反応度価値、中性子束分布)を測定し、Sn法及びモンテカルロ法による計算結果と比較評価した。未臨界度測定試験体系は体系内にボイド領域を含むため、新型転換炉(ATR)の炉心核特性評価に用いられてきた拡散コードを適用することができない。ここではボイド領域を含む体系に適用できる輸送計算コードによる計算を行い、計算精度等の適用性を評価した。輸送コードとしては、2次元SN法によるTWODANTコードと、従来原子炉の計算にはあまり適用されていない多群モンテカルロ計算コードKENOを使用した。ATR等の原子炉炉心と比較して複雑な形状の未臨界度測定試験体系の炉心核特性を評価した結果、重水臨界水位等の臨界特性については、多群モンテカルロコードKENOの評価精度が0.5%$$Delta$$k/k以内であることが確認され、中性子束の炉心内空間分布については、2次元SNコードTWODANTによって正しく評価できることが明らかとなった。特にモンテカルロコードは、炉心構造の違いによる微少な反応度変化を正確に再現しており、複雑な原子炉炉心の評価に極めて有効であることが確認された。

報告書

高速炉核特性の数値解析手法の改良(II)

竹田 敏一*; 木本 達也*; 北田 孝典*; 片木 洋介*

PNC TJ9605 97-001, 100 Pages, 1997/03

PNC-TJ9605-97-001.pdf:2.82MB

本報告書は次の2部と付録から構成されている。第1部 摂動モンテカルロ法による反応度評価手法の改良第2部 3次元六角体系用輸送ノード法の改良付録 高速炉におけるドップラー反応度解析のためのU238サンプルの実効断面積第1部 摂動モンテカルロ法による反応度評価手法の改良摂動モンテカルロ法の理論式の検討を行い、その後摂動モンテカルロ法の計算コードへの導入を行った。同じヒストリー数の計算を行ったところ、摂動モンテカルロ計算コードでの計算時間は、通常のモンテカルロ計算の1$$sim$$2割程度の増加であった。作成した摂動モンテカルロ計算コードを用いて行った試計算結果は概ね妥当であり、また偏差も十分に小さいことから、摂動モンテカルロ法の有効性が示された。 しかしながら、得られた摂動前後の固有値の差が評価手法により、正や負になる場合があること、また、摂動による中性子源分布の変化を考慮しない従来手法と、摂動による中性子源分布の変化を考慮する新手法の間で、計算結果に有為な差が見られないことから、さらに摂動モンテカルロ計算コードに対して検討を加える必要がある。第2部 3次元六角体系用輸送ノード法の改良ノード法を用いた六角-Z体系用輸送計算コード「NSHEX」は、高速炉の炉心計算において非常に精度のよい評価を得ることがこれまでの研究で確かめられてきた。しかし非均質性の高い炉心においてややその精度が劣ることがわかっている。その原因として、ノード内空間分布を求める際用いる横方向もれの評価法が挙げられる。径方向スイープ時における、集合体からの径方向もれ分布を得るためには各ノード頂点中性子束を評価する必要がある。従来法では、その頂点の周囲のノード境界平均中性子束を用いている。新手法においては、その頂点近傍の中性子束分布を、いくつかの寄与が大きいと考えられるノード、およびノード境界の中性子束をパラメータとしてx,u 2次式で評価し、その分布式より頂点中性子束を算出している。以上の手法を用い、NEACRP 3D NEUTRON TRANSPORT BENCHMARKSの小型高速炉モデル、および実機「もんじゅ」体系を用いて検討計算を行った。その結果実効増倍率においては、多群モンテカルロ法によるGMVPに対して、どの手法もほぼ0.1%以内に一致する。各領域の中性子束も、数%以内に一致したものの、制御棒の挿入された体

報告書

新型転換炉データベース「ふげん」設計/研究開発/特性[安全解析評価]

武田 宏*; 澤井 定*; 石上 ひとし*

PNC TJ1409 97-013, 47 Pages, 1997/03

PNC-TJ1409-97-013.pdf:1.1MB

1開発成果・設計・運転経験の反映開発成果、設計・運転経験など、プロジェクトで得られた全ての知見は、主として下記に反映される。1)現在のプラント運転の安全性・信頼性の向上2)現在のプラントの改良設計3)次のプラントの設計2"設計/研究開発/プラント特性データベース"構築の考え方"設計/研究開発/プラント特性データベース"は、上記の目的に活用できるように構築する。(1)設計と研究開発を融合したデータベースプロジェクトの研究開発は、設計技術根拠、即ち、建設方針、設計基準、許容設計限界値、設計の検証などの確立が主体であることを考慮して研究開発と設計の各データベースを融合したデータベースを構築する。(2)プラント特性の組み入れプラント設計は安全裕度を入れて行うが、プラントはその固有の実力性能、即ち、安全率なしで稼働する。従って、下記の発展が効果的にできるよう、プラント特性(とくに初期特性)をデータベースに組み入れた。1)設計と実力性能を比較評価して、適切な安全裕度を設定2)定期検査データとカップルした劣化度評価3)燃料の燃焼・組成変化に伴う特性変化の解明4)実際のプラント特性に基づく技術と設計の高度化3"設計/研究開発/プラント特性データベース"の構成以上の評価を基に、本データベースを下記の構成にした。1)設計基本事項2)設計関連技術情報(設計技術根拠)3)プラント特性

報告書

新型転換炉データベース「ふげん」設計/研究開発/特性[熱水力]

武田 宏*; 澤井 定*; 石上 ひとし*

PNC TJ1409 97-012, 25 Pages, 1997/03

PNC-TJ1409-97-012.pdf:0.54MB

1開発成果・設計・運転経験の反映開発成果、設計・運転経験など、プロジェクトで得られた全ての知見は、主として下記に反映される。1)現在のプラント運転の安全性・信頼性の向上2)現在のプラントの改良設計3)次のプラントの設計2"設計/研究開発/プラント特性データベース"構築の考え方"設計/研究開発/プラント特性データベース"は、上記の目的に活用できるように構築する。(1)設計と研究開発を融合したデータベースプロジェクトの研究開発は、設計技術根拠、即ち、建設方針、設計基準、許容設計限界値、設計の検証などの確立が主体であることを考慮して研究開発と設計の各データベースを融合したデータベースを構築する。(2)プラント特性の組み入れプラント設計は安全裕度を入れて行うが、プラントはその固有の実力性能、即ち、安全率なしで稼働する。従って、下記の発展が効果的にできるよう、プラント特性(とくに初期特性)をデータベースに組み入れた。1)設計と実力性能を比較評価して、適切な安全裕度を設定2)定期検査データとカップルした劣化度評価3)燃料の燃焼・組成変化に伴う特性変化の解明4)実際のプラント特性に基づく技術と設計の高度化3"設計/研究開発/プラント特性データベース"の構成以上の評価を基に、本データベースを下記の構成にした。1)設計基本事項2)設計関連技術情報(設計技術根拠)3)プラント特性

報告書

新型転換炉データベース「ふげん」設計/研究開発/特性[核]

武田 宏*; 澤井 定*; 石上 ひとし*

PNC TJ1409 97-011, 25 Pages, 1997/03

PNC-TJ1409-97-011.pdf:0.59MB

1開発成果・設計・運転経験の反映開発成果、設計・運転経験など、プロジェクトで得られた全ての知見は、主として下記に反映される。1)現在のプラント運転の安全性・信頼性の向上2)現在のプラントの改良設計3)次のプラントの設計2"設計/研究開発/プラント特性データベース"構築の考え方"設計/研究開発/プラント特性データベース"は、上記の目的に活用できるように構築する。(1)設計と研究開発を融合したデータベースプロジェクトの研究開発は、設計技術根拠、即ち、建設方針、設計基準、許容設計限界値、設計の検証などの確立が主体であることを考慮して研究開発と設計の各データベースを融合したデータベースを構築する。(2)プラント特性の組み入れプラント設計は安全裕度を入れて行うが、プラントはその固有の実力性能、即ち、安全率なしで稼働する。従って、下記の発展が効果的にできるよう、プラント特性(とくに初期特性)をデータベースに組み入れた。1)設計と実力性能を比較評価して、適切な安全裕度を設定2)定期検査データとカップルした劣化度評価3)燃料の燃焼・組成変化に伴う特性変化の解明4)実際のプラント特性に基づく技術と設計の高度化3"設計/研究開発/プラント特性データベース"の構成以上の評価を基に、本データベースを下記の構成にした。1)設計基本事項2)設計関連技術情報(設計技術根拠)3)プラント特性

報告書

受動的安全性を強化した大型FBRプラント

林 秀行; 一宮 正和; 永沼 正行

PNC TN9410 96-062, 186 Pages, 1996/02

PNC-TN9410-96-062.pdf:5.83MB

水素化ジルコニウム添加によりドップラー係数を強化したスペクトル調整窒化物燃料炉心を採用した130万kWe級大型FBRプラント概念を構築した。炉心設計においては、水素化ジルコニウムの添加割合を最適化することにより、径ブランケット層数1層の条件で増殖比1.2を満足できた。また、炉心径の縮小により原子炉構造設計への負担が軽減された。炉心安全性については、流量喪失スクラム失敗事象(ULOF)及び過出力スクラム失敗事象(UTOP)に対しても炉心固有の反応度特性のみで冷却材沸騰を防止できており、固有安全炉心と呼べるレベルにまで安全性が向上されている。また、ヘッドアクセスループ型炉に特有の部位についての過渡時熱応力、地震時変位及び流量急減時の炉心支持板変位等を評価してプラントの健全性を総合的に確認した。主要設備物量から建設コストの予測を行った結果、同じ出力の軽水炉を100とした時に、本大型FBRプラントの建設コストは130$$sim$$140であることが示された。

報告書

高速増殖原型炉もんじゅ炉心特性の詳細評価(4)-(その2)-

not registered

PNC TJ1678 95-003, 97 Pages, 1995/02

PNC-TJ1678-95-003.pdf:2.59MB

もんじゅは平成6年4月に臨界に達し、その後11月まで炉心反応度の測定等の性能試験が実施された。もんじゅの運転性を評価するため、この試験から得られた炉心反応度の測定結果を踏まえて初装荷炉心の炉心特性を明確化した。(1)得られた測定項目のうち1)臨界性、2)過剰反応度、3)燃焼特性(Pu241崩壊に伴う反応度劣化)、4)等温温度係数及び5)流量係数を整理し、設計値と比較した。(2)過剰反応度及びPu241崩壊に伴う反応度劣化について設計値との差があり、その差について核種毎の寄与で分析した結果、臨界実験に使用されなかった高次化Pu同位体及び尾Am241の断面積に原因があることがわかった。(3)高次化Pu同位体及びAm241の最新の核データを使用すれば、今回検討した測定項目については設計手法がほぼ妥当であることがわかった。(4)炉心の温度を約200$$^{circ}C$$から約300$$^{circ}C$$上昇させて得られた等温温度係数については、設計値の方が約6%程過小評価であり、今後得られた出力欠損反応度の測定値と設計値の比較・検討と一緒に検討する必要がある。(5)性能試験結果を反映した過剰反応度に基づいて、運転可能日数を検討した結果からノミナル評価では約70日(全出力換算日)の燃焼が可能であり、不確かさを考慮すると燃焼日数は約50日となる。(6)運転可能日数の評価精度を向上させるためには、更に性能試験結果の解析及び出力試験結果の解析の実施が必要である。

報告書

高速増殖原型炉もんじゅ炉心特性の詳細評価(4)-(その1)-

奈良岡 良二*; 丸山 仁嗣*; 坂本 尚一*; 藤原 博次*; 貝瀬 與一郎*

PNC TJ1678 95-002, 121 Pages, 1995/02

PNC-TJ1678-95-002.pdf:4.83MB

「もんじゅ」では、仏国フェニックス炉で発生した様な急変する反応度低下事象が起こるとは考えられないが、仮りにその様な事象を想定したとしても確実に検知し事象の推移を記録できる高速反応度測定システムの概念設計を実施し、以下の成果を得た。(1)高速反応度測定システムに既設の中性子束検出器を利用する場合のシステム設計を実施し、使用する中性子計装設備の計測チャンネルとして出力領域系が適切であること及び計測チャンネルからのデータ採取位置を明確にした。(2)選定された出力領域形(チャンネルIV及びV)について現地にて応答時間測定試験を実施した。その結果、高速反応度測定システムに利用するためには絶縁増幅器(アイソレータ)の応答性をさらに高速化する必要があることを明確にした。(3)アイソレータを高速化するための回路の概念設計を実施し、高速化の成立性の見通しを得た。(4)専用中性子検出器を使用する場合の概念設計を実施し、問題点、課題を摘出した。(5)以上の検討結果を踏まえて総合評価を実施し、高速反応度測定システムには既設の出力領域測定系計測チャンネルを利用しかつアイソレータの高速化をはかることで成立する見通しを得た。また、今後の検討課題を摘出、整理し、実施工程を定めた。

報告書

高速増殖原型炉もんじゅ性能試験結果を反映した燃料設計最適化

not registered

PNC TJ1678 95-006, 181 Pages, 1994/11

PNC-TJ1678-95-006.pdf:5.25MB

高速増殖原型炉もんじゅは、平成6年4月に初臨界を達成後、5月には初期炉心構成を完了し、炉心反応度の測定等の性能試験が実施されている。そこで、性能試験で得られたデータ及び燃料製造実績を反映した炉心及び燃料特性を評価し、今後の炉心運転計画を策定するためのデータの整備作業を実施した。(1)初装荷炉心の運転日数増加策の検討運転日数増加策の検討を行い、第一回取替燃料のうち、内側炉心燃料を最大24体まで初装荷炉心の中途で交換することにより必要な運転日数を確保できることを確認するとともに、核特性上の成立性を評価した。(2)初装荷炉心中途燃料交換した場合の第二サイクル炉心核特性評価初装荷炉心での中途燃料交換体数をパラメータとして残りの取替燃料を交換した第二サイクルでの炉心特性を評価し、その成立性を確認した。また、(1)及び(2)の結果から第一回取替燃料のPu富化度を検討評価し、内側炉心・・・16.0fiss Pu wt%外側炉心・・・21.0fiss Pu wt%を選定し、炉心特性の評価検討を行って設工認変更申請のための基礎データを作成した。(3)熱特性評価初装荷炉心の中途で燃料交換を行う場合、交換体数をパラメータとして熱特性評価を行った。その結果、一部ケースで被覆管最高温度が676$$^{circ}C$$となるものの他のケースでは673$$^{circ}C$$であり、また、燃料最高温度は2322$$^{circ}C$$であり、熱的制限値を満足することを確認した。また、従来設計からの設計進捗及び製造実績を反映した工学的安全係数を再整備し、燃料及び被覆管の最高温度への影響を検討した。従来正規分布を仮定していたものを一様分布とした場合でも、従来設計からの見直し、保守性の削減により、燃料温度で約9$$^{circ}C$$、被覆管温度で約1$$^{circ}C$$の温度上昇に留まり、熱的制限値を満足することを確認した。(4)今後の燃料取替計画見直しのための基本データの整備今後策定される第二サイクルまでの運転計画で、初装荷炉心での中途燃料交換体数等の決定に資するため、初装荷炉心での中途燃料交換後の炉心及び第二サイクル炉心の核特性基本データを整備した。

報告書

受動的安全特性によるFBRの安全性の強化(I) 受動的安全方策の評価・研究開発計画の提案-

家田 芳明; 丹羽 元; 宇都 成昭; 山口 彰; 上出 英樹; 大島 宏之; 林 謙二

PNC TN9410 94-235, 135 Pages, 1994/08

PNC-TN9410-94-235.pdf:6.67MB

この報告書では、将来の大型高速増殖炉を対象として、炉心崩壊事故(CDA)の発生防止あるいは影響緩和の目的で導入される可能性のある受動的な安全方策について議論する。 まず、受動的な安全方策を評価するための方法論を提案する。また、将来から提案されている受動的な安全方策をレビューするとともに、CDAの発生防止及び(または)影響緩和に有効な革新的な受動的安全方策を提案する。これらの受動的安全方策を、提案した方法論で評価した後、推奨される受動的な安全方策の組み合わせ例を提示する。さらに、受動的な安全方策の有効性を実証するために必要な研究開発計画を、新たな炉内試験計画を含めて提示する。

報告書

アクチニド炉心技術研究で使用する解析方法

庄野 彰; 檜山 一夫*

PNC TN9520 94-003, 84 Pages, 1994/06

PNC-TN9520-94-003.pdf:2.39MB

本資料は、アクチニド炉心技術研究で使用している解析の流れを理解し、かつ実行するために必要な情報を整理したものである。アクチニド炉心技術研究で実施しているPu利用炉心やMA装荷炉心の検討においては、従来型高速炉の炉心とは相当異なる仕様を設定し、炉心特性上の特徴を比較・評価することが重要である。このため、炉心形状、燃料物質、燃料仕様等を大幅に変更した炉心について、一通りの核特性を算出することが基本的な作業となる。このプロセスでは、多数の解析コード、ユーティリティプログラムを解析目的に応じて使用する必要があり、取り扱うJCL、入力データセットも多岐に渡る。これらのコード等それぞれのマニュアルは既に存在するが、それだけでは、プロセス全体の流れを理解し、一通りの解析を実行することは困難である。そこで昨年来実施してきたPu燃焼型高速炉のパラメータスタディをモデルケースとして、一連の解析フローを整理し、各ステップで使用するコード等の機能の概要、処理フロー、JCL例、入力データ例、出力例等をまとめた。

報告書

「燃料破損時のFP炉内移行挙動の研究(その2)」の調査

中桐 俊男; 石川 浩康; 大野 修司; 小沢 隆之; 加藤 一憲*; 小山 真一; 下山 一仁

PNC TN9510 94-001, 246 Pages, 1994/05

PNC-TN9510-94-001.pdf:14.89MB

安全工学部プラント安全工学室では、高速増殖炉のソースターム研究を、一部燃料材料開発部照射燃料試験室の協力を得つつ実施しているが、本研究を今後さらに効率的かつ有効に進めていくための有益な情報を得ることを目的として、昭和63年に日本原子力発電(株)殿が米国DOEに委託したTREAT炉を用いたソースターム炉内試験計画の検討に係わる英文報告書"「燃料破損時のFP炉内移行挙動の研究(その2)」-PLANING STUDY OF IN-PILE LOOP TESTS FOR THE EVALUATION OF FISSION PRODUCT TRANSPORT-"を入手し(動燃報告書登録番号:PNC ZR1471 93-001)、関係者で和訳して、その内容を調査した。本報告書で得られた情報は、将来実施予定の以下の試験研究に反映する予定である。(1)炉内ソースタームを支配する、FP・燃料蒸気泡のナトリウム中減衰挙動の解明に重点をおいた炉内ソースターム挙動総合模擬試験に於ける事故事象の模擬方法や測定手法等。(2)現在大洗安全工学部が中心になって検討中の安全性試験炉計画(SERAPH計画)に於けるソースターム炉内試験の方法論や、試験体の考え方等。

報告書

修正中性子源増倍法の適用性検討(3)

not registered

PNC TJ2222 94-001, 264 Pages, 1994/03

PNC-TJ2222-94-001.pdf:9.07MB

高速原型炉もんじゅの炉心性能試験で実施される制御棒等の反応度価値測定の測定精度を向上させるため、修正中性子源増倍法(以下、MSM法)について中性子輸送計算体系・方法の検討、及び補正係数の作成等を行い、その適用性と精度の検討を実施した。本年度は、前年度の課題である輸送計算の計算境界付近での中性子束計算精度の向上を図り、広範囲の反応度について予測精度評価を行った。さらに検出器応答関数の整備を行い、制御棒パターンや中性子源位置による検出器応答の評価を行った。まず、R$$theta$$体系の$$theta$$方向境界付近での中性子束計算精度の問題に関して、360$$^{circ}$$ R$$theta$$体系では、中性子束の収束誤差を0.1%以下にしないと境界付近の中性子束を数十%も過小評価することがあることが判った。次に、炉内・炉外NIS検出器の応答関数を1次元随伴中性子束計算により詳細に求め、燃料末装荷の炉心およ150体装荷炉心での検出器応答の実測値と比較した。炉内NISでは計算値は過大評価、炉外NISでは過小評価となる傾向があるが、炉心の状態が変わってもその検出器間のC/E値の比はほぼ一定であり、燃料未装荷時の検出器応答の実測値と計算値の比から、燃料装荷時の検出器応答も較正できる可能性があることが判った。これ以前の作業までに開発したMSM法の補正係数計算手法を、燃料装荷段階の未臨界炉心に適用し、反応度の予測を試みた。燃料装荷体数が124体までは、検出器間の反応度予測値のばらつきは小さいが、150体の場合には極端にばらつきが大きくなった。これは、補正係数計算に用いている中性子束分布計算方法の中性子倍増の計算精度に起因するもので、臨界に近づき増倍中性子が検出器応答に占める寄与が大きくなった場合は、基準炉心と対象炉心の反応度の比を実際に近く求められるような中性子束分布計算方法を用いなければならないことが判った。最後に、疑似的な3次元体系である2次元RZ計算と2次元XY計算の比較により、制御棒部分挿入状態の中性子束を2次元XYモデルで精度良く計算する方法について検討し、RZ計算で得た制御棒部分挿入時の実効増倍率を良く再現する2次元XY計算での制御棒領域の体積割合を得た。

報告書

核設計基本データべースの整備(II)-JUPITER-I実験データ集-

核データベース*

PNC TN9410 93-010, 502 Pages, 1992/12

PNC-TN9410-93-010.pdf:17.39MB

本報告書は,動燃事業団と米国エネルギー省(DOE)との共同研究として,アルゴンヌ国立研究所(ANL-W)の大型臨界実験装置ZPPRにおいて,1978年から1979年にわたって実施した大型高速炉臨界実験のフェーズI(JUPITER-I)の実験データをまとめたものである。JUPITER-I実験には,電気出力60$$sim$$80万kWe級の2領域均質炉心を模擬した以下の7つの炉心が含まれる。ここで収録した実験項目は,臨界性,制御棒反応度,反応率分布,Naボイド反応度,サンプル反応度,ドップラー反応度,ガンマ発熱,中性子スペクトルである。(1)ZPPR-9炉心:炉心体積約46001の2領域円筒型のクリーン炉心。(2)ZPPR-10A炉心:ZPPR-9炉心とほぼ同じサイズで19本のCRPを持つ6角形の工学的模擬炉心。(3)ZPPR-10B炉心:ZPPR-10A炉心のCRPのうち7本を制御棒とした。(4)ZPPR-10C炉心:ZPPR-10A炉心とほぼ相似形で炉心体積を62001とした。(5)ZPPR-10D炉心:ZPPR-10C炉心と同じサイズでCRPを31本とした。(6)ZPPR-10D/1炉心:ZPPR-10D炉心のCRPのうち中心1本を制御棒とした。(7)ZPPR-10D/2炉心:ZPPR-10D炉心のCRPのうち7本を制御棒とした。本実験データ集は,JUPITER実験の成果を,大型FBR炉心の炉物理研究および核設計のための基本データベースとして,将来にわたって有効に活用することを目的として整備したものである。したがって,実験内容を理解するために必要な情報とともに,実際に実験を解析するために必要な詳細データをくまなく網羅した。また,本実験データ集に含まれている実験体系の情報は,ほとんど大洗工学センターの大型計算機上に保管されており,今後の炉物理研究の進捗に応じて解析コードへの入力データとして利用できるようにした。

報告書

高速炉によるTRU消滅処理に関する研究(II) -TRU消滅超長寿命炉心及びTRU断面積不確かさの影響に関する検討-

山岡 光明; 若林 利男

PNC TN9410 92-371, 94 Pages, 1992/12

PNC-TN9410-92-371.pdf:1.95MB

高レベル廃棄物に含まれるTRU元素(Np,Am,Cm)は長期にわたり放射能を有しているが,これを短期間に消滅できればその管理は大幅に容易なものとなる。本研究では高速炉によるTRU消滅処理に関して検討を実施した。概要を以下に示す。1・TRU消滅超長寿命炉心の検討TRUを装荷したFBR炉心は運転サイクル機関を延ばす高いポテンシャルを持っている。この特性を生かしてプラント寿命中燃料交換なしで運転しつつ,TRUを効率的に消滅することを目的としたTRU消滅超長寿命炉心の検討を行った。出力を30万KWeとし,炉心構成の最適化・核熱特性検討を行った結果,最適化炉心では燃焼反応度変化が34年運転で2.5%$$Delta$$k/kk'と非常に小さくなった。また,出力変動も小さくできたため熱的制限を満足した。TRU消滅量は寿命34年で約5300Kgで,100万KWe軽水炉約6基が寿命中に発生させるTRUに相当する。TRU装荷によりドップラー係数(絶対値)がかなり小さい。今後は安全性・制御性など炉心動特性への影響について検討する必要がある。2・TRU断面積の不確かさの影響検討 現状ではTRU断面積の不確かさが大きいことに鑑み,この不確かさが主要炉心特性に及ぼす影響を調べた。ここでは,上記のTRU消滅超長寿命炉心と5%TRU装荷大型炉心を対象として断面積の感度解析を実施した。さらに,簡易的手法により炉心特性の不確かさを評価した。この結果をもとに,不確かさへの影響が大きく精度を向上すべき断面積を摘出した。

報告書

「FFTF」炉心の湾曲反応度解析

山岡 光明; 林 秀行

PNC TN9410 92-368, 75 Pages, 1992/12

PNC-TN9410-92-368.pdf:1.49MB

米国の高速実験炉「FFTF(Fast Flux Test Facility)」においては,高速炉の受動的安全性に関わる反応度フィードバック,特に炉心変形に伴う反応度効果の確認・予測精度向上のため,受動的安全性試験(フェーズIIB試験)が計画されている。その予備解析作業の一環として,炉心湾曲による反応度効果の解析を行った。湾曲反応度は30%流量からのULOF事象を想定して評価された炉心湾曲量をもとにして計算した。(炉心湾曲計算は実験炉技術課で実施)本計算では,二次元RZ体系において基準炉心の燃料反応度分布を関数形表示し,一時摂動近似を適用して湾曲反応度を求めた。報告書では,出力・流量比と湾曲反応度の関係を,集合体間のパッドギャップや炉心拘束機構と炉心間のギャップなどをパラメータとしてまとめた。主な結果は以下のとおりである。1・出力流量比の増加に伴う炉心変形により,集合体間のパッドギャップがとじるまでは正の反応度が印加される。これは集合体頂部の相互作用の反力により,燃焼部が内側へ変位するためである。2・集合体間のパッドギャップがとじた後は,逆に燃料部が外側へ変位を始め,負の反応度が印加される。3・最外周炉心集合体では,湾曲量及び単位湾曲量当たりの反応度効果ともに大きいために,その湾曲挙動が湾曲反応度を支配する。また,本計算作業にあたり湾曲反応度計算コードを作成・整備した。その計算内容と使用方法についても報告する。

報告書

核設計基本データベースの整備 -最新手法によるJUPITER-I実験解析-

核設計DB W*

PNC TN9410 92-278, 347 Pages, 1992/09

PNC-TN9410-92-278.pdf:7.93MB

大型FBR炉心のための核設計基本データベース整備の一環として,日米共同大型高速炉臨界実験(JUPITER)のフェーズI(電気出力60$$sim$$80万kWe級の2領域均質炉心模擬体系シリーズ)について,これまでの炉物理研究の成果として確立された最新解析手法を用いて再解析を行い,これを評価した。今回用いた解析手法及び主要解析結果を示す。(1)解析手法 (1)核断面積:JENDL-2ベースの70群高速炉用定数セットJFS-3-J2(89年版)(2)セル計算 :プレートストレッチモデル,Toneの方法によるプレート非均質効果カレント重み輸送断面積(3)体系基準計算 :3次元XYZ体系18群拡散計算,Benoistの異方性拡散係数(4)体系補正計算 :3次元輸送,メッシュ,非対象セル,AMM効果など(2)解析結果(1)臨界性のC/E(計算/実験)値は,各炉心間(ZPPR-9,10A$$sim$$10D/2)でよく安定しており,0.9937+ー0.0006である。炉心体積やCRP有無などに対するC/E値依存性は見られない。(2)制御棒価値のC/E値は,各炉心の中央部から径方向の外側に行くほど大きくなる径方向依存性が見られる(5$$sim$$11%)。また,反応率分布のC/E値にも同様の径方向依存性(2$$sim$$5%)が見られ,制御棒価値の傾向とほぼ対応している。(3)C28/F49,F25/F49の反応率比C/E値は各炉心間で安定しており,内側炉心部では,それぞれ1.06,1.03である。(4)Naボイド反応度のC/E値は,炉心中央部平均で約+25%の過大評価である。

34 件中 1件目~20件目を表示